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Problem 1. [3+3 Points]

1) Let K = Q(
√
3,
√
7) and α =

√
3+

√
7

2
∈ K. Show that α is integral over Z.

Hint: Show that α is a root of the polynomial X2 −
√
3X − 1.

2) Let L = Q(
√
3,
√
5) and α =

√
3+

√
5

2
∈ L. Show that α is not integral over Z.

Hint: Compute NL
Q(α). Recall that L/Q is a Galois extension of degree 4 and Gal(L/Q) =

{id, σ1, σ2, σ1σ2}, where id is the identity map, σ1(
√
3) = −

√
3, σ1(

√
5) =

√
5 and σ2(

√
3) =

√
3,

σ2(
√
5) = −

√
5.
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Problem 2. [2+4+2+2+3+2+4 = 19 Points]

One can check that the polynomial X3 −X − 1 has two complex and one real root α ∈ R.
Let K = Q(α).

1) Show that X3 −X − 1 is irreducible over Q and that [K : Q] = 3.

2) Compute the traces TrKQ of α, α2, α3 and α4.
Hint: Recall that TrKQ : K → Q is a Q-linear map.

3) Show that DK
Q (1, α, α2) = −23.

4) Show that the absolute discriminant dK equals −23 and that 1, α, α2 is a Z-basis of OK .

5) Let ρ be a prime ideal in OK containing 23OK . Show that the residual index of ρ equals 1.
Hint: Use 4).

6) Show that α + 1 is a unit in OK .

7) Let u be a unit in OK , such that u ̸= ±1. Show that there exist non-zero integers n and m,
such that (α + 1)n = um.
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Problem 3. [4+4+1+2+6=17 Points]

Let K = Q(
√
10) be a quadratic field extension of Q.

1) Explicitly compute the decomposition of 2OK and 3OK into a product of prime ideals.

2) Deduce from 1) that there exists a unique prime ideal ρ in OK with N(ρ) = 2. Show that ρ
is not a principle ideal.

3) Show that the order of ρ in the class group C(OK) is 2.

4) Find r2 and dK for the extension K/Q and show that(
4

π

)r2 n!

nn

√
|dK | < 4 ,

where n = [K : Q].

5) Deduce from 1) - 4) that C(OK) ≃ Z/2Z.
Hint: To establish a relation between the classes of ideals in C(OK) compute the norm
NK

Q (2+
√
10) and consider the decomposition of the principle ideal (2+

√
10)OK into a product

of prime ideals.
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Problem 4. [6+3+3+6=18 Points]

1) Let Q ⊂ K be a number field and A ⊂ K a dvr with field of fractions K, maximal ideal m
and uniformizing element π. Show that OK ⊂ A.
Hint: Let x ∈ K. Recall that there is a unique decomposition x = uπn, where u ∈ A∗ and n is
an integer. Observe that if x ∉A, then x−1 ∈ A.

2) Show that ρ := m ∩ OK is a non-zero prime ideal in OK .
Hint: Recall that K is the field of fractions of OK .

3) Let (OK)ρ ⊂ K be the localization of OK at ρ (that is (OK)ρ = S−1OK , where S = OK\ρ).
Show that (OK)ρ ⊂ A.

4) Conclude that A = (OK)ρ.
Hint: Observe that both (OK)ρ and A are dvrs with K as field of fractions.
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